Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.743
Filtrar
1.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598639

RESUMO

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Assuntos
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona , Microscopia Crioeletrônica , Glicina/metabolismo , Neurotransmissores , Mamíferos/metabolismo
2.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471779

RESUMO

Self-ordered sequencing is an important executive function involving planning and executing a series of steps to achieve goal-directed outcomes. The lateral frontal cortex is implicated in this behavior, but downstream striatal outputs remain relatively unexplored. We trained marmosets on a three-stimulus self-ordered spatial sequencing task using a touch-sensitive screen to explore the role of the caudate nucleus and putamen in random and fixed response arrays. By transiently blocking glutamatergic inputs to these regions, using intrastriatal CNQX microinfusions, we demonstrate that the caudate and putamen are both required for, but contribute differently to, flexible and fixed sequencing. CNQX into either the caudate or putamen impaired variable array accuracy, and infusions into both simultaneously elicited greater impairment. We demonstrated that continuous perseverative errors in variable array were caused by putamen infusions, likely due to interference with the putamen's established role in monitoring motor feedback. Caudate infusions, however, did not affect continuous errors, but did cause an upward trend in recurrent perseveration, possibly reflecting interference with the caudate's established role in spatial working memory and goal-directed planning. In contrast to variable array performance, while both caudate and putamen infusions impaired fixed array responding, the combined effects were not additive, suggesting possible competing roles. Infusions into either region individually, but not simultaneously, led to continuous perseveration. Recurrent perseveration in fixed arrays was caused by putamen, but not caudate, infusions. These results are consistent overall with a role of caudate in planning and flexible responding and the putamen in more rigid habitual or automatic responding.


Assuntos
Callithrix , Putamen , Animais , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Corpo Estriado , Núcleo Caudado/fisiologia
3.
Sheng Li Xue Bao ; 75(5): 611-622, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37909132

RESUMO

Post-traumatic stress disorder (PTSD) has been reported to be associated with a higher risk of cardiovascular disease. The amygdala may have an important role in regulating cardiovascular function. This study aims to explore the effect of amygdala glutamate receptors (GluRs) on cardiovascular activity in a rat model of PTSD. A compound stress method combining electrical stimulation and single prolonged stress was used to prepare the PTSD model, and the difference of weight gain before and after modeling and the elevated plus maze were used to assess the PTSD model. In addition, the distribution of retrogradely labeled neurons was observed using the FluoroGold (FG) retrograde tracking technique. Western blot was used to analyze the changes of amygdala GluRs content. To further investigate the effects, artificial cerebrospinal fluid (ACSF), non-selective GluR blocker kynurenic acid (KYN) and AMPA receptor blocker CNQX were microinjected into the central nucleus of the amygdala (CeA) in the PTSD rats, respectively. The changes in various indices following the injection were observed using in vivo multi-channel synchronous recording technology. The results indicated that, compared with the control group, the PTSD group exhibited significantly lower weight gain (P < 0.01) and significantly decreased ratio of open arm time (OT%) (P < 0.05). Retrograde labeling of neurons was observed in the CeA after microinjection of 0.5 µL FG in the rostral ventrolateral medulla (RVLM). The content of AMPA receptor in the PTSD group was lower than that in the control group (P < 0.05), while there was no significant differences in RVLM neuron firing frequency and heart rate (P > 0.05) following ACSF injection. However, increases in RVLM neuron firing frequency and heart rate were observed after the injection of KYN or CNQX into the CeA (P < 0.05) in the PTSD group. These findings suggest that AMPA receptors in the amygdala are engaged in the regulation of cardiovascular activity in PTSD rats, possibly by acting on inhibitory pathways.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Ratos Sprague-Dawley , Receptores de AMPA , 6-Ciano-7-nitroquinoxalina-2,3-diona/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Receptores de Glutamato/metabolismo , Tonsila do Cerebelo , Aumento de Peso , Bulbo/fisiologia , Pressão Sanguínea
4.
Eur J Pharmacol ; 957: 175998, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597648

RESUMO

Pruritus, including neuropathic and psychogenic pruritus, is an unpleasant feeling that causes a desire to scratch, which negatively impacts physical and psychological aspects of daily life. Nonetheless, little is known about the neural mechanisms involved in pruritus. Glutamate is a predominant excitatory neurotransmitter in the mammalian central nervous system and exerts its effects by binding to various glutamate receptors, including kainate (KA) receptors; however, the precise involvement of each glutamate receptor in pruriceptive processing remains unclear, particularly that of KA receptors. Therefore, the roles of KA receptors in histamine-dependent and -independent itch were investigated using CNQX, an AMPA/KA receptors antagonist, UBP310 and UBP302, antagonists of KA receptors, and small interfering (si)RNAs against KA receptor subunits in mice with acute and chronic pruritus. The effects of KA receptor antagonists on histamine-induced c-Fos expression in the spinal cord were also examined. The intrathecal administration of CNQX reduced the number of scratching events induced by histamine and chloroquine. On the other hand, UBP310 or UBP302 and the siRNAs of KA receptor subunits 1-3 significantly inhibited the induction of scratching events in mice treated with histamine, while no significant change was observed in the induction of spontaneous scratching events in mice with chronic pruritus. In addition, antagonists of KA receptors attenuated c-Fos expression in the superficial layers of the dorsal horn induced by histamine. These results indicate that KA receptors are involved in acute pruriceptive processing in the spinal cord induced by histamine, but not chloroquine or chronic itch.


Assuntos
Histamina , Receptores de Ácido Caínico , Animais , Camundongos , 6-Ciano-7-nitroquinoxalina-2,3-diona , Medula Espinal , Cloroquina , Antagonistas de Aminoácidos Excitatórios , Ácido Glutâmico , Prurido , RNA Interferente Pequeno , Mamíferos
5.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130780

RESUMO

Spinal cord stimulation (SCS) evokes fast epidural evoked compound action potential (ECAP) that represent activity of dorsal column axons, but not necessarily a spinal circuit response. Using a multimodal approach, we identified and characterized a delayed and slower potential evoked by SCS that reflects synaptic activity within the spinal cord. Anesthetized female Sprague Dawley rats were implanted with an epidural SCS lead, epidural motor cortex stimulation electrodes, an epidural spinal cord recording lead, an intraspinal penetrating recording electrode array, and intramuscular electromyography (EMG) electrodes in the hindlimb and trunk. We stimulated the motor cortex or the epidural spinal cord and recorded epidural, intraspinal, and EMG responses. SCS pulses produced characteristic propagating ECAPs (composed of P1, N1, and P2 waves with latencies <2 ms) and an additional wave ("S1") starting after the N2. We verified the S1-wave was not a stimulation artifact and was not a reflection of hindlimb/trunk EMG. The S1-wave has a distinct stimulation-intensity dose response and spatial profile compared with ECAPs. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective competitive antagonist of AMPA receptors (AMPARs)] significantly diminished the S1-wave, but not ECAPs. Furthermore, cortical stimulation, which did not evoke ECAPs, produced epidurally detectable and CNQX-sensitive responses at the same spinal sites, confirming epidural recording of an evoked synaptic response. Finally, applying 50-Hz SCS resulted in dampening of S1-wave but not ECAPs. Therefore, we hypothesize that the S1-wave is synaptic in origin, and we term the S1-wave type responses: evoked synaptic activity potentials (ESAPs). The identification and characterization of epidurally recorded ESAPs from the dorsal horn may elucidate SCS mechanisms.


Assuntos
Estimulação da Medula Espinal , Ratos , Animais , Feminino , Estimulação da Medula Espinal/métodos , Ratos Sprague-Dawley , 6-Ciano-7-nitroquinoxalina-2,3-diona , Medula Espinal/fisiologia , Corno Dorsal da Medula Espinal , Potenciais Evocados/fisiologia , Potenciais de Ação/fisiologia , Estimulação Elétrica
6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(2): 189-194, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36916380

RESUMO

OBJECTIVE: To investigate whether propofol can cause injury to hippocampal mitochondria in neonatal rats and the regulation of excitatory amino acid receptor AMPA receptor. METHODS: Forty-eight Sprague-Dawley (SD) rats aged 7 days were randomly divided into control group, propofol group, propofol+AMPA receptor agonist AMPA group (propofol+AMPA group) and propofol+AMPA receptor inhibitor CNQX group (propofol+CNQX group), with 12 rats in each group. The rats in the propofol groups were intraperitoneally injected with 30 mg/kg propofol, while in control group with 3 mg/kg normal saline. Each group was given 1/2 of the first dose every 20 minutes after the first administration, three times a day, for three consecutive days. The rats in the propofol+AMPA group and the propofol+CNQX group were injected with 1 g/L AMPA or CNQX 5 µL through left ventricle after the first administration. Three days after administration, the rats were sacrificed to obtain brain tissue. Western blotting was used to determine the expression of AMPA receptor glutamate receptors (GluR1, GluR2) subunit totally (T) and on membrane (M) in hippocampus. The expression of dynamin-related protein-1 (DRP-1) and phosphorylated-DRP-1 (p-DRP-1) and mitofusin 2 (Mfn2) related to mitochondrial fission and fusion were determined. The adenosine triphosphate (ATP) content and ATPase activity were determined. RESULTS: Compared with the control group, GluR1 expression and its M/T ratio were significantly increased after treatment of propofol, GluR2 expression and its M/T ratio were significantly decreased, the ATP content and ATP-related enzyme activity were decreased significantly, while the expression of DRP-1 and its phosphorylation was significantly increased, and the expression of Mfn2 was significantly decreased. The changes indicated that repeated intraperitoneal injection of 30 mg/kg propofol leading to the injury of mitochondria in neural cells. Compared with the propofol group, the GluR1 expression and its M/T ratio further increased after AMPA agonist administration [T-GluR1 protein (T-GluR1/ß-actin): 2.41±0.29 vs. 1.72±0.11, M-GluR1 protein (M-GluR1/ß-actin): 1.18±0.15 vs. 0.79±0.09, M/T ratio: 0.78±0.12 vs. 0.46±0.08, all P < 0.01], GluR2 expression was significantly increased [T-GluR2 protein (T-GluR2/ß-actin): 0.65±0.13 vs. 0.30±0.14, P < 0.01; M-GluR2 protein (M-GluR2/ß-actin): 0.17±0.05 vs. 0.13±0.07, P > 0.05], but its M/T ratio was further decreased (0.27±0.10 vs. 0.41±0.08, P < 0.05). The ATP-related enzyme activity was further decreased, and the ATP content was further decreased (µmol/g: 0.32±0.07 vs. 0.70±0.10, P < 0.01). Mitochondria DRP-1 expression and its phosphorylation were further increased [DRP-1 protein (DRP-1/GAPDH): 2.75±0.36 vs. 1.70±0.19, p-DRP-1 protein (p-DRP-1/GAPDH): 0.99±0.14 vs. 0.76±0.15, both P < 0.05], and Mfn2 expression was further decreased (Mfn2/GAPDH: 0.23±0.12 vs. 0.54±0.12, P < 0.05). This indicated that the AMPA agonist increased the expression of the AMPA receptor GluR1 subunit on the cell membrane and shifted the GluR2 into the cell, thus increasing the mitochondrial injury caused by propofol. Compared with the propofol group, the GluR1 expression and its M/T ratio decreased significantly after AMPA inhibitor administration [T-GluR1 protein (T-GluR1/ß-actin): 0.99±0.14 vs. 1.72±0.11, M-GluR1 protein (M-GluR1/ß-actin): 0.21±0.07 vs. 0.79±0.09, M/T ratio: 0.21±0.07 vs. 0.46±0.08, all P < 0.01], the change of GluR2 expression was not significant, but its M/T ratio was significantly increased (0.59±0.09 vs. 0.41±0.08, P < 0.05). The ATP-related enzyme activity was increased significantly, and the ATP content was increased significantly (µmol/g: 0.87±0.12 vs. 0.70±0.10, P < 0.05). Mitochondria DRP-1 expression and its phosphorylation were significantly decreased [DRP-1 protein (DRP-1/GAPDH): 1.18±0.17 vs. 1.70±0.19, p-DRP-1 protein (p-DRP-1/GAPDH): 0.37±0.10 vs. 0.76±0.10, both P < 0.05], and Mfn2 expression was significantly increased (Mfn2/GAPDH: 0.78±0.10 vs. 0.54±0.12, P < 0.05). This indicated that AMPA inhibitor promoted the movement to the cell membrane of GluR2 subunits meanwhile inhibited the expression of GluR1 subunits, thus alleviating the injury of mitochondrial caused by propofol in the brain. CONCLUSIONS: Repeated intraperitoneal injection of 30 mg/kg propofol for 3 days can increase the expression of GluR1 subunits of AMPA receptor in 7-day neonatal rats hippocampus mainly distributing in the cell membrane, decrease the expression of GluR2 subunits moving into the cell, thus causing injury of mitochondrial function and dynamics, which can be aggravated by AMPA receptor agonist and alleviated by AMPA receptor inhibitors.


Assuntos
Propofol , Receptores de AMPA , Ratos , Animais , Receptores de AMPA/metabolismo , Ratos Sprague-Dawley , Propofol/farmacologia , Animais Recém-Nascidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Actinas/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Hipocampo/metabolismo
7.
J Neurosci Res ; 101(6): 866-880, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36634122

RESUMO

The effects of a single and multiple doses of ginkgolide A, B, C, and bilobalide, active components of Ginkgo biloba extract (EGb 761), on absence seizures were investigated in male WAG/Rij rats, a genetic animal model of absence epilepsy. Furthermore, the interactions of ginkgolide A together with NMDA receptor antagonist MK-801, AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), or L-type calcium channel blocker nicardipine were studied to figure out how ginkgolide A affects spike-wave discharges (SWDs) in the brain. The experiments were done using 6-8-month-old male WAG/Rij rats with infusion cannula and EEG electrode implanted. Ginkgolide A, B, C, and bilobalide were administered intraperitoneally for 7 days at a dose of 6 mg/kg. In interaction groups, 6 µg ginkgolide A was injected intracerebroventricularly in combination with MK-801 (10 µg), CNQX (1 µg), and nicardipine (50 µg) for 7 days. EEG was recorded from animals at the baseline, first dose, and seventh dose periods for 4 h. Ginkgolide A (p = .028), C (p = .046), and bilobalide (p = .043) significantly increased the frequency of SWDs in WAG/Rij rats. Ginkgolide A injected into the lateral ventricle with MK-801 (p = .046), CNQX (p = .043), and nicardipine (p = .046) significantly increased the number of SWDs after seventh dose. Finally, the EGb 761-related increase in absence epilepsy was determined to be caused by ginkgolide A, C, and bilobalide. All three receptor antagonists/channel blockers do not inhibit the pro-absence effect of ginkgolide A. The findings revealed that ginkgolide A's pro-absence effect is mediated by brain circuits other than ionotropic glutamate receptors or L-type calcium channels.


Assuntos
Bilobalídeos , Epilepsia Tipo Ausência , Ratos , Masculino , Animais , Epilepsia Tipo Ausência/genética , 6-Ciano-7-nitroquinoxalina-2,3-diona , Maleato de Dizocilpina , Nicardipino , Ginkgolídeos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Eletroencefalografia , Modelos Animais de Doenças
8.
Arch Razi Inst ; 77(2): 681-688, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36284938

RESUMO

This study aimed to assess the possible feeding behavior alterations by central interactions of cholecystokinin (CCK) and glutamatergic systems in neonatal chickens. In experiment 1, chickens received intracerebroventricular (ICV) administration of saline and CCK (CCK4; 0.25, 0.5, and 1 nmol). In experiment 2, birds were ICV injected with saline, CCK8s (0.25, 0.5, and 1 nmol). In experiment 3, chickens received the ICV injection of saline, CCK8s (1 nmol), MK-801 (15 nmol), and co-injection of the CCk8s+MK-801. Experiments 4-7 were performed similar to experiment 3, except for chickens that were injected with CNQX (390 nmol), AIDA (2 nmol), LY341495 (150 nmol), and UBP1112 (2 nmol) instead of MK-801. Subsequently, the total amount of the consumed food was determined. According to the results, the ICV administration of CCK4 (0.25, 0.5, and 1 nmol) could not affect the food intake in chickens (P>0.05). The ICV injection of the CCK8s (0.25, 0.5, and 1 nmol) led to a dose-dependent hypophagia (P<0.05). Moreover, hypophagia induced by CCK8s decreased by the co-injection of the CCK8s+MK-801 (P<0.05). These results showed that the hypophagic effects of the CCK on food intake can be mediated by NMDA glutamate receptors in layer-type chickens.


Assuntos
Galinhas , Ingestão de Alimentos , Animais , Maleato de Dizocilpina/farmacologia , Colecistocinina/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , N-Metilaspartato/farmacologia , Animais Recém-Nascidos , Comportamento Alimentar , Receptores de Glutamato
9.
Biomed Pharmacother ; 155: 113726, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166962

RESUMO

D-serine has attracted increasing attention for its possible role in depression. L-4-Fluorophenylglycine (L-4FPG), an inhibitor of the neutral amino acid transporter ASCT1/2, has been shown to regulate extracellular D-serine levels. The present study aimed to explore the potential antidepressant effects of L-4FPG. First, the acute effects of L-4FPG on the forced swimming test, elevated plus maze test, and novelty-suppressed feeding test were examined. L-4FPG showed antidepressant-like effects, which could be reversed by rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist. The phosphorylation levels of mTOR and GluR1 in the hippocampus were also increased after L-4FPG treatment. Next, the therapeutic effects of L-4FPG were examined in a chronic social defeat stress (CSDS) model of depression. L-4FPG ameliorated depression-like behaviors in mice subjected to CSDS. Furthermore, treatment with L-4FPG prior to each social defeat stress session not only decreased defensive behaviors but also prevented CSDS-induced social avoidance and anxiety-like and depression-like behaviors. These findings suggest that L-4FPG may be useful not only in alleviating depression but also in protecting against chronic stress-related psychiatric disorders.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Depressão , Camundongos , Animais , 6-Ciano-7-nitroquinoxalina-2,3-diona/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Hipocampo , Serina/metabolismo , Serina/farmacologia , Sirolimo/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/farmacologia , Mamíferos
10.
J Integr Neurosci ; 21(4): 121, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35864772

RESUMO

BACKGROUND: To explore the mechanism of endocannabinoid cannabinoid receptor 1 (CB1) receptor pathway that regulates synaptic plasticity in the dorsal horn of the spinal cord of rats with neuropathic pain at different ages. METHODS: Neonatal, juvenile, and adult male sprague dawley (SD) rats were divided into the spinal nerve preservation injury (SNI), SNI + Anandamide (AEA), SNI + D-AP5, SNI + CNQX, SNI + D-AP5 + AEA, SNI + CNQX + AEA, sham SNI, sham SNI + AEA, sham SNI + D-AP5, sham SNI + CNQX, sham SNI + D-AP5 + AEA, and sham SNI + CNQX + AEA groups, respectively. Paw withdrawal threshold (PWT) and long-term potentiation (LTP) of the spinal dorsal horn PS (field potential) were assessed to judge the spinal cord's functional state. Immunohistochemical staining and Western blot were conducted to detect CB1 protein levels in the spinal dorsal horn. RESULTS: The LTP response in the spinal cord was alleviated in the SNI + AEA group. After treatment with the N-methyl-D-aspartate (NMDA) receptor blocker D-AP5, the LTP of neonatal A nerve was relieved further. After treatment with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker CNQX, LTP change in the A nerve was not obvious. The LTP of the A and C nerves were relieved after D-AP5 or CNQX treatment in young and adult animals; however, the blocking effect of CNQX was obvious. The altered levels of PWT and CB1 support these results. CONCLUSIONS: The CB1 receptor activation produces analgesia in neonatal rats through NMDA receptor formation for PS inhibitory activity. In juvenile and adult rats, this phenomenon was effectuated through NMDA and AMPA receptors. This difference could be attributed to the varied number of NMDA and/or AMPA receptors activated during development and changes in the NMDA/AMPA receptor ratio.


Assuntos
N-Metilaspartato , Receptores de AMPA , 6-Ciano-7-nitroquinoxalina-2,3-diona/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal , Corno Dorsal da Medula Espinal/metabolismo , Sinapses
11.
Neurochem Int ; 158: 105381, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764225

RESUMO

The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.


Assuntos
Fármacos Neuroprotetores , Acidente Vascular Cerebral , Canais de Cátion TRPM , 6-Ciano-7-nitroquinoxalina-2,3-diona , Maleato de Dizocilpina/farmacologia , Glucose , Humanos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Nifedipino/farmacologia , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
12.
Arch Biochem Biophys ; 727: 109330, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35750097

RESUMO

Calcium is one of the most vital intracellular secondary messengers that tightly regulates a variety of cell physiology processes, especially in the brain. Using a fluorescent Ca2+-sensitive Oregon Green probe, we revealed three different amplitude distributions of spontaneous Ca2+ events (SCEs) in neurons between 15 and 26 days in vitro (DIV) culture maturation. We detected a series of amplitude events: micro amplitude SCE (microSCE) 25% increase from the baseline, intermediate amplitude SCE (interSCE) as 25-75%, and macro amplitude SCE (macroSCE) - over 75%. The SCEs were fully dependent on extracellular Ca2+ and neuronal network activity and vanished in the Ca2+-free solution, 10 mM Mg2+-block, or in the presence of voltage-gated Na+-channel blocker, tetrodotoxin. Combined patch-clamp and Ca2+-imaging techniques revealed that microSCE match single action potential (AP), interSCE - burst of 3-12 APs, and macroSCE - 'superburst' of 10+ APs. MicroSCEs were blocked by a common α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) receptor antagonist, CNQX. The γ-aminobutyric acid (GABA) A-type receptor (GABAAR) picrotoxin blockade and L-type voltage-dependent Ca2+-channel inhibitor diltiazem significantly reduced microSCE frequency. InterSCEs were inhibited by CNQX, but picrotoxin treatment significantly increased its amplitude. The N-methyl-d-aspartate (NMDA) receptor antagonist, D-APV, voltage-gated K+-channel blocker, tetraethylammonium, noticeably suppressed interSCE amplitude. We also demonstrate that macroSCEs were AMPA/KA receptor-independent.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Neurônios , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Picrotoxina/farmacologia , Receptores de Ácido Caínico , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
13.
Brain Res ; 1787: 147919, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436447

RESUMO

A technique combining fluorescence imaging with Ca2+ indicators and single-cell laser scanning photostimulation of caged glutamate (LSPS) allowed identification of functional connections between individual neurons in mixed cultures of rat neocortical cells as well as observation of synchronous spontaneous activity among neurons. LSPS performed on large numbers of neurons yielded maps of functional connections between neurons and allowed calculation of neuronal network parameters. LSPS also provided an indirect measure of excitability of neurons targeted for photostimulation. By repeating LSPS sessions with the same neurons, stability of connections and change in the number and strength of connections were also determined. Experiments were conducted in the presence of bicuculline to study in detail the properties of excitatory neurotransmission. The AMPA receptor inhibitor, 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), abolished synchronous neuronal activity but had no effect on connections mapped by LSPS. In contrast, the NMDA receptor inhibitor, 2-Amino-5-phosphono-pentanoic acid (APV), dramatically decreased the number of functional connections between neurons while also affecting synchronous spontaneous activity. Functional connections were also decreased by increasing extracellular Mg2+ concentration. These data demonstrated that LSPS mapping interrogates NMDA receptor-dependent connectivity between neurons in the network. In addition, a GluN2A-specific inhibitor, NVP-AAM077, decreased the number and strength of connections between neurons as well as neuron excitability. Conversely, the GluN2A-specific positive modulator, GNE-0723, increased these same properties. These data showed that LSPS can be used to directly study perturbations in the properties of NMDA receptor-dependent connectivity in neuronal networks. This approach should be applicable in a wide variety of in vitro and in vivo experimental preparations.


Assuntos
N-Metilaspartato , Receptores de N-Metil-D-Aspartato , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , N-Metilaspartato/farmacologia , Neurônios , Ratos , Receptores de AMPA/fisiologia
14.
Nat Commun ; 13(1): 493, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078979

RESUMO

Ultrasonic neuromodulation has the unique potential to provide non-invasive control of neural activity in deep brain regions with high spatial precision and without chemical or genetic modification. However, the biomolecular and cellular mechanisms by which focused ultrasound excites mammalian neurons have remained unclear, posing significant challenges for the use of this technology in research and potential clinical applications. Here, we show that focused ultrasound excites primary murine cortical neurons in culture through a primarily mechanical mechanism mediated by specific calcium-selective mechanosensitive ion channels. The activation of these channels results in a gradual build-up of calcium, which is amplified by calcium- and voltage-gated channels, generating a burst firing response. Cavitation, temperature changes, large-scale deformation, and synaptic transmission are not required for this excitation to occur. Pharmacological and genetic inhibition of specific ion channels leads to reduced responses to ultrasound, while over-expressing these channels results in stronger ultrasonic stimulation. These findings provide a mechanistic explanation for the effect of ultrasound on neurons to facilitate the further development of ultrasonic neuromodulation and sonogenetics as tools for neuroscience research.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/citologia , Canais Iônicos/metabolismo , Neurônios/fisiologia , Ondas Ultrassônicas , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Técnicas de Inativação de Genes , Canais Iônicos/genética , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Estimulação Física , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Tetrodotoxina/farmacologia , Tapsigargina/farmacologia
15.
Acta Neurobiol Exp (Wars) ; 82(4): 521-533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36748975

RESUMO

This study was designed to investigate a possible interaction between 17ß­estradiol and glutamate receptors of the paragigantocellularis lateralis (LPGi) nucleus on pain coping behavior using the formalin test in ovariectomized (OVX) rats. The results showed that intra­LPGi injection of 17ß­estradiol declined flexing behavior in both phases of the formalin test. Still, it only diminished the late phase of licking behavior in the OVX rats. NMDA receptor antagonist, AP5, reversed the analgesic effect of 17ß­estradiol on flexing behavior in both phases of the formalin test in the OVX rats. The 17ß­estradiol­induced anti­nociceptive effect on the flexing duration was prevented by CNQX (AMPA receptor antagonist) only in the early phase of the formalin test in the OVX rats. AP5 and CNQX reduced the anti­nociceptive effect of 17ß­estradiol in the late phase, but not the early phase of licking response in the OVX rats. These results suggested: (i) The intra­LPGi injection of 17ß­estradiol is satisfactory in producing modest analgesia on the formalin­induced inflammatory pain in the OVX rats; (ii) Co­treatment of glutamate receptors (NMDA and AMPA) antagonists and 17ß­estradiol in the LPGi nucleus decrease the analgesic effect of 17ß­estradiol in the OVX rats; (iii) There is a possible association between 17ß­estradiol and glutamate receptors of the LPGi nucleus on pain coping behavior in the OVX rats.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Dor , Ratos , Animais , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/uso terapêutico , Microinjeções , Dor/tratamento farmacológico , Dor/induzido quimicamente , Estradiol/farmacologia , Receptores de Glutamato/uso terapêutico , Receptores de N-Metil-D-Aspartato , Analgésicos/farmacologia , Analgésicos/uso terapêutico
16.
Folia Morphol (Warsz) ; 81(2): 379-386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33778937

RESUMO

BACKGROUND: Nesfatin-1 is a newly identified satiety peptide that has regulatory effects on food intake and glucose metabolism, and is located in the hypothalamic nuclei, including the supraoptic nucleus (SON). In this study, we have investigated the hypothesis that nesfatin-1 neurons are activated by refeeding and intraperitoneal glucose injection and that the glutamatergic system has regulatory influences on nesfatin-1 neurons in the SON. MATERIALS AND METHODS: The first set of experiments analysed activation of nesfatin-1 neurons after refeeding as a physiological stimulus and the effectiveness of the glutamatergic system on this physiological stimulation. The subjects were randomly divided into three groups: fasting group, refeeding group and antagonist (CNQX + refeeding) group. The second set of experiments analysed activation of nesfatin-1 neurons by glucose injection as a metabolic stimulus and the effectiveness of the glutamatergic system on this metabolic stimulation. The subjects were randomly divided into three groups: saline group, glucose group and antagonist (CNQX + glucose) group. RESULTS: Refeeding significantly increased the number of activated nesfatin-1 neurons by approximately 66%, and intraperitoneal glucose injection activated these neurons by about 55%, compared to the fasting and saline controls. The injections of glutamate antagonist (CNQX) greatly decreased the number of activated nesfatin-1 neurons. CONCLUSIONS: This study suggested that nesfatin-1 neurons were activated by peripheral and/or metabolic signals and that this effect was mediated through the glutamatergic system.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Glucose , 6-Ciano-7-nitroquinoxalina-2,3-diona/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Ingestão de Alimentos/fisiologia , Antagonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glucose/metabolismo , Glucose/farmacologia , Humanos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Nucleobindinas
17.
Neuroendocrinology ; 112(5): 493-509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348318

RESUMO

BACKGROUND: The incidence of depression is twice higher in women than in men, and gender differences in the prevalence rates first emerge around puberty. Prenatal stress (PS) induces gender-dependent depressive-like behavior in adolescent offspring, but the neuro-physiological mechanisms remain unclear. Our study aimed to investigate the possible neuro-physiological mechanisms of gender-dependent depressive-like behavior in PS adolescent offspring and further explored the possibility of treating depression in adolescent female rats. METHODS: The pregnant rats were exposed to restraint stress in the third trimester for 7 days. The depressive-like behavior and the expression of N-cadherin and AMPARs in the hippocampus of adolescent offspring rats were assessed. 10 mg/kg AMPAR antagonist CNQX and 10 mg/kg N-cadherin antagonist ADH-1 were intraperitoneally injected into female adolescent offspring, respectively; 0.2 µg AMPAR agonist CX546 was administered to the dentate gyrus of male adolescent offspring to determine the role of N-cadherin-AMPARs in depressive-like behavior of the offspring following PS. RESULTS: We found that PS increased N-cadherin expression, which upregulated GluA1 expression in the dentate gyrus, mediating depressive-like behavior in adolescent female rat offspring by reducing PSD-95. In addition, ADH-1 and CNQX improved depressive-like behavior in adolescent female offspring following PS. Furthermore, injection of the CX546 into the dentate gyrus induced depressive-like behavior in PS male offspring. CONCLUSION: The gender-dependent expression of N-cadherin-GluA1 pathway in adolescent offspring in the dentate gyrus was the key factor in gender differences of depressive-like behavior following PS.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , 6-Ciano-7-nitroquinoxalina-2,3-diona , Adolescente , Animais , Caderinas/metabolismo , Depressão/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/metabolismo
18.
J Cell Mol Med ; 25(15): 7257-7269, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184406

RESUMO

Our previous study has found that aureusidin can inhibit inflammation by targeting myeloid differentiation 2 (MD2) protein. Structural optimization of aureusidin gave rise to a derivative named CNQX. LPS was used to induce inflammation in intestinal macrophages; flow cytometry, PI staining and Hoechst 33342 staining were used to detect the apoptotic level of macrophages; enzyme-linked immunosorbent assay (ELISA) was utilized to detect the expression level of inflammatory factors (including IL-1ß, IL-18 and TNF-α); immunofluorescence staining was used to investigate the expression of MD2; Western blot was employed to measure the protein level of TLR4, MD2, MyD88 and p-P65. As a result, CNQX with IC50 of 2.5 µM can significantly inhibit the inflammatory damage of macrophages, decrease apoptotic level, reduce the expression level of inflammatory factors and simultaneously decrease the expression level of TLR4, MD2, MyD88 as well as p-P65. Caco-2 cell line was used to simulate the intestinal mucosal barrier in vitro, LPS was employed to induce cell injury in Caco-2 (to up-regulate barrier permeability), and CNQX with IC50 of 2.5 µl was used for intervention. Flow cytometry was used to detect the apoptotic level of Caco-2 cells, trans-epithelial electric resistance (TEER) was measured, FITC-D was used to detect the permeability of the intestinal mucosa, and Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2). As a result, CNQX decreased the apoptotic level of Caco-2 cells, increased TEER value, decreased the expression levels of MyD88, TLR4 and MD2, and increased the protein levels of tight junction proteins (including occludin and claudin-1). C57BL/6 wild-type mice were treated with drinking water containing Dextran sulphate sodium (DSS) to establish murine chronic colitis model. After CQNX intervention, we detected the bodyweight, DAI score and H&E tissue staining to evaluate the life status and pathological changes. Immunohistochemistry (IHC) staining was used to detect the expression of MD2 protein, tight junction protein (including occludin and claudin-1). Transmission electron microscopy and FITC-D were used to detect intestinal mucosal permeability. Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2) in the intestinal mucosa tissue. Consequently, CNQX can inhibit the intestinal inflammatory response in mice with colitis, inhibit the mucosal barrier injury, increase the expression of tight junction proteins (including occludin and claudin-1) and decrease the expression levels of MyD88, TLR4 and MD2. Mechanistically, pull-down and immunoprecipitation assays showed that CNQX can inhibit the activation of TLR4/MD2-NF-κB by binding to MD2 protein. Collectively, in this study, we found that CNQX can suppress the activation of TLR4 signals by targeting MD2 protein, thereby inhibiting inflammation and mucosal barrier damage of chronic colitis.


Assuntos
6-Ciano-7-nitroquinoxalina-2,3-diona/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Antígeno 96 de Linfócito/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células CACO-2 , Colite Ulcerativa/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
19.
Mol Brain ; 14(1): 63, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789707

RESUMO

Cerebellar granule cells (GCs) relay mossy fiber (MF) inputs to Purkinje cell dendrites via their axons, the parallel fibers (PFs), which are individually located at a given sublayer of the molecular layer (ML). Although a certain degree of heterogeneity among GCs has been recently reported, variability of GC responses to MF inputs has never been associated with their most notable structural variability, location of their projecting PFs in the ML. Here, we utilize an adeno-associated virus (AAV)-mediated labeling technique that enables us to categorize GCs according to the location of their PFs, and compare the Ca2+ responses to MF stimulations between three groups of GCs, consisting of either GCs having PFs at the deep (D-GCs), middle (M-GCs), or superficial (S-GCs) sublayer. Our structural analysis revealed that there was no correlation between position of GC soma in the GC layer and location of its PF in the ML, confirming that our AAV-mediated labeling was important to test the projection-dependent variability of the Ca2+ responses in GCs. We then found that the Ca2+ responses of D-GCs differed from those of M-GCs. Pharmacological experiments implied that the different Ca2+ responses were mainly attributable to varied distributions of GABAA receptors (GABAARs) at the synaptic and extrasynaptic regions of GC dendrites. In addition to GABAAR distributions, amounts of extrasynaptic NMDA receptors appear to be also varied, because Ca2+ responses were different between D-GCs and M-GCs when glutamate spillover was enhanced. Whereas the Ca2+ responses of S-GCs were mostly equivalent to those of D-GCs and M-GCs, the blockade of GABA uptake resulted in larger Ca2+ responses in S-GCs compared with D-GCs and M-GCs, implying existence of mechanisms leading to more excitability in S-GCs with increased GABA release. Thus, this study reveals MF stimulation-mediated non-uniform Ca2+ responses in the cerebellar GCs associated with the location of their PFs in the ML, and raises a possibility that combination of inherent functional variability of GCs and their specific axonal projection contributes to the information processing through the GCs.


Assuntos
Sinalização do Cálcio/fisiologia , Córtex Cerebelar/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Córtex Cerebelar/ultraestrutura , Dependovirus/genética , Genes Reporter , Vetores Genéticos , Camundongos , Fibras Nervosas/fisiologia , Células de Purkinje/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/fisiologia
20.
Cell Rep ; 35(3): 109007, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882305

RESUMO

Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.


Assuntos
Globo Pálido/fisiopatologia , Hipercinese/fisiopatologia , Córtex Motor/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Tremor/fisiopatologia , 4-Aminopiridina/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Hipercinese/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Optogenética/métodos , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica , Tremor/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...